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We relate the first-order quantum energy shifts due to perturbation of a billiard boundary to classical
periodic orbits using the Gutzwiller relation. By using the specific example of the wedge billiard we
show how the periodic orbit theory thus derived very accurately describes correlations among the energy

shifts.

PACS number(s): 05.45.+b, 03.20.+1, 03.65.Sq

I. INTRODUCTION

The study of chaotic classical systems and their quan-
tal analogues has generated much interest in recent years
[1-3]. This effort has produced a partial understanding
of how classical mechanics and quantum mechanics are
connected in the semiclassical regime.

In the study of chaos and the connection between clas-
sical and quantum mechanics billiard systems such as the
Sinai billiard [4,5], the stadium or Bunimovich billiard
[6,7], and the wedge billiard [8-11] have been illuminat-
ing paradigms. Billiard systems have some advantages
over generic smooth Hamiltonian systems, such as
offering a natural definition for the surface of section
(often the billiard boundary) and allowing analytic maps
to be derived that take the classical trajectory from one
intersection of the surface of section to another. The
classical mechanics of such billiard systems ‘“‘scales™ [12]
with energy; the phase space structure scales simply as
the energy changes as opposed to the complex bifurca-
tions and changes that occur in generic Hamiltonian sys-
tems. Quantum mechanically billiards have the advan-
tage that the energy eigenvalues and eigenfunctions are
relatively easily numerically calculated. Hence the quan-
tal and classical observables are readily compared.

A remarkable relation, due to Gutzwiller [2,13], pro-
vides a semiclassical connection bridging the classical and
quantum descriptions in a particularly clear and informa-
tive way. The classical periodic orbits of the system are

. the crucial ingredient in the classical side of the relation
whereas the quantum energy eigenvalues are the crucial
ingredient of the quantum side. The Gutzwiller relation
shows how to obtain the quantum energy spectrum if the
periodic orbits (and their properties, such as the stability
exponents, action, and period) of the classical system are
known; or conversely, how to obtain information about
the periodic orbit properties if the quantum energy spec-
trum is known. Using the Gutzwiller relation an under-
standing of long-range correlations in the energy spectra
of chaotic systems has been achieved through an under-
standing of how classical periodic orbits manifest them-
selves in the energy spectrum.

A natural question to ask once the role of periodic or-
bits in the spectrum itself has been elucidated is how the
periodic orbits take part in changing the spectrum as pa-
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rameters of the system are varied. How do the periodic
orbits manifest themselves in the first-order energy shifts?

For smooth Hamiltonian systems the connection be-
tween periodic orbits and perturbation theory via semi-
classical methods along the lines of the Gutzwiller rela-
tion has been provided by several authors [14-16]. In
these papers the matrix element relevant for first-order
perturbation theory, namely, {¢,|H,|¢, ), where v, is
the nth eigenfunction of the unperturbed system, and H,
is the perturbation, is evaluated in a stationary phase ap-
proximation and related to periodic orbits via the
Gutzwiller relation. Unfortunately for billiard systems,
the smoothness of the perturbing potential H, is an im-
portant feature of the derivation and applicability of the
formulas derived in those papers. Since billiard systems
have discontinuous potentials (at the walls of the billiard),
the perturbation H, is also discontinuous, and the results
of these papers may not be used to find matrix elements
and do perturbation theory on billiards.

In this paper we complete the story started by those
previous authors by providing a connection between
periodic orbits and first-order quantal energy shifts for
billiards. We show how, using the derived formulas, we
can understand correlations among the first-order energy
shifts occurring in billiards. We provide a concrete ex-
ample using the wedge billiard, both for pedagogic pur-
poses and to test the accuracy of the relation we derive.
We find that the theory and numerics are in very good
agreement.

II. BOUNDARY PERTURBATIONS;
FIRST-ORDER THEORY

We consider a billiard whose hard wall boundary is
specified by some geometrical parameters we collectively
denote as the vector 7). What happens if we change the
shape or the position of the boundary in some small way?
How do the energy eigenvalues change?

We want to change the boundary such that the change
in the energy eigenvalue is small at the energy we are
looking at. More precisely, this means that if the nth un-
perturbed energy eigenvalue is given by E'* and the per-
turbed energy eigenvalue is given by E, then the
difference E, —E\” <<1/dz(E?") where dx(E) is the
Thomas-Fermi density of states at energy E.
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Consider a continuous, smooth function AE(E), which
is defined at the points E =E\% by

AE(E®)=E,—E{ . (1)
Consider the function

S AE(E)S(E—E\) . 2)

n=0

Because of the appearance of the § function, Eq. (2) has a
definite meaning only when it is used as part of a kernel
and subsequent integrations are carried out over E
(Arfken [17] Sec. 8.7, Schiff [18] p. 55). In other words,
the fundamental property of Eq. (2) is that

fO“’dE S AE(E)S(E—E{”)= 3 AE(E”). (3
n=0 n=0

To isolate the change in energy of a particular eigen-
value, say the one at n=n’, integrate Eq. (2) about a
small window centered on E=E,?,

EFVOE 2 ) ()
S0 9B 3 AEEBSE ~EM=AEES) . @
n n=

This is precisely the change in energy of the eigenvalue
E!? induced by the perturbation. We would like to be
able to find this function AE(E) to do perturbation
theory. What function has the property Eq. (3), at least
approximately?

We consider the quantum staircase N(E), defined by

N(E)= 3 ©(E—E,), (5)
n=0

as in Fig. 1. The quantum staircase counts the number of
energy levels below some energy E. The solid curve in
Fig. 1 shows the quantum staircase for the unperturbed
billiard N‘©(E), the dotted curve shows the quantum
staircase for the perturbed billiard N (E), and the dashed
curve shows the function

AN(E)=N""E)—N(E) . (6)

When used as part of a kernel in an integral over E this
function AN(E) has very similar properties to the func-
tion AE(E). Analogous to Eq. (3) we have for AN(E)

fO“dE S AN(E)= 3 AE(E(”), (7)
n=0 n=0

N(E,n)=N1(E,n)+ Ny (E,n)
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FIG. 1. A plot of the exact quantum staircase Eq. (5) for the
unperturbed system (solid line), the perturbed system (dotted
line), and the difference Eq. (6) (dashed line).

and analogous to Eq. (4), if one integrates about a small
window centered on the eigenvalue n =n’ then

E,.+3E ©
fEn.—SE dEAN(E)=AE(E), (8)

provided of course that our integration window S8E is
“wide enough” but not “too wide.” More precisely,
1/dyp(E,)>8E > AE(E\?).

The function

0, x<—1/2I,
§,(x)=1{1, —1/21<x<1/2l, ©)
0, x>1/21,

approximates 8(x) for />>1, [ finite. AN (E) approxi-
mates 3 °_,AE(E)8(E —E?),

AN(E)~ S, AE(E)8(E —E?) (10)

n=0

in a similar sense as a series of very narrow rectangles.

II1. PERIODIC ORBITS AND AN(E)

From the Gutzwiller theory [2,10,11,13] for systems
showing hard chaos N(E,n) is given semiclassically in
terms of periodic orbits by

© 1 [sin(kS, (E,n)/Ai—ku,m/2)+sin(ku,m/2)]
=NpEp+3 3 —- X ) (11
Y k=1Tk (exp{kv,/2} —o,exp{ —kwv,/2})
where N1p is the Thomas-Fermi staircase defined by
Nop(E, )= fOEdTF(E',n)dE' (12)

and we have explicitly shown the dependence of the functions on the geometrical parameter 7 describing the boundary.

In Eq. (11) ¥ labels the periodic orbits, k counts their multiple traversals, S, (E,n)= §

p-dq is the classical action cal-
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culated around one traversal of the periodic orbit, v, is the stability exponent, o

dromy matrix, and u
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» is the sign of the trace of the mono-

y is the Maslov index, an integer related to the number of hard wall collisions a periodic orbit un-

dergoes and the number of times the stable and unstable manifolds rotate about the periodic orbit over one traversal.

A small change in 1 of 87 gives to first order
_ a]VTF(E"q)6 aNosc(E"”)B

AN(E,n)= -
n an n an n
ON=(E,n) oo cos(kS., (E,n)/%—ku,m/2)] oS, (E,n)
S s Al -3 3 L k?:/ /2 U —kv ;/2 ] - 1 on , (13)
o Y K= Th (e 7 —U;‘,e ) on

where we have kept only highest-order terms in 1/#, since we are thinking of the semiclassical regime #—0.

But, because of Eq. (10), we get

Z ON1(E,n)
EAE(E,nm(E—E,(,O))z___IF__l'_

n=0 o k=1

This shows explicitly how to get the function we seek in
terms of periodic orbits.

As with trying to compute individual energy levels
with the Gutzwiller relation (and the periodic orbit form
of the staircase function) we can quickly run into trouble
trying to calculate the individual AE(E,,n) by simply
doing the sums required in Eq. (14) and integrating over a
small energy range centered on E=E,. This is for two
reasons; the sums involved are at best conditionally con-
vergent, and too many periodic orbits are needed to get
the energy resolution we need [1,11,12]. Typically the
number of periodic orbits needed grows exponentially. In
the case of the wedge billiard, which we will present in
Sec. IV, even for a perturbation that shifts the first energy
eigenvalue by - of a level spacing the classical sum on
the right-hand side (RHS) of Eq. (14), as a function of E,
requires over 10°® periodic orbits to be able to resolve the
8 function on the left-hand side (LHS) to % of a level
spacing.

A more mathematically well defined and numerically
tractable method is to look for correlations in the first-
order energy shifts by decomposing the energy shifts into
harmonic components by doing what we call a “damped
Gaussian” Fourier transform [9,16,19,20]. The damping
in the transform makes the sums absolutely convergent
and requires us to know only a finite number of energy
levels (or conversely, periodic orbits). Also, the damping
limits the resolution in the transformed function. This
finite-wavelength resolution has the practical effect of
smearing both the 8 functions in Eq. (2) and the small
rectangles in the function AN(E).

A damped transform of Eq. (14) is done by multiplying
both sides by a function h(E,w), [for example,
h(E,0)=exp(—E?) explioE)], and integrating with
respect to E to get

S AE(E”,ph(E®, 0)
n=0
o aNTF(E,'T])
~=[ h(E,0) 3~ 8ndE

o ON . (E,n)
— [ “h(E,0)—=—"—8ndE . (15)
0 an

© ]
n—3 2
Y

[cos(kS  (E,n)/fi—ku,m/2)] aSY(E,'n)8

kv, /2 —kv./2
(e K& —or;fe VV/) on

7 . (14)

IV. APPLICATION TO THE WEDGE BILLIARD

We use the wedge billiard [8-11,20,21] as an example
to illustrate the theory outlined in Sec. III. The wedge
billiard (see Fig. 2) consists of a particle of mass m
confined to the region between the y axis and the line
y =x cotd, ¢ being the wedge angle. We assume the par-
ticle makes elastic collisions with the wedge boundaries
and is acted upon by a constant force mg in the negative
y direction. The Hamiltonian is

1 2, 2
H———ZTn—(pxﬁ—py)-i—mgy, x>0, y=xcotd, (16)

where p, and p, are the momenta in the x and y direc-
tions, respectively.

For wedge angles less than 45° the classical system ex-
hibits soft chaos; the phase space consists of regions of
chaos interspersed with invariant tori. For ¢=45° the
system is integrable; the phse space is entirely filled with
invariant tori. For wedge angles between 45° and 90° the
classical system exhibits hard chaos [22]; there are no in-
variant tori in the phase space and all periodic orbits are

I
mg

FIG. 2. The geometry of the wedge billiard.
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unstable. In this paper we will be concerned with the pa-
rameter region where the wedge billiard exhibits hard
chaos, 45° < ¢ <90°.

The analogous quantum system is obtained from sub-
stituting operators into Eq. (16), giving the quantum ei-
genvalue equation

_ ﬁZ aZ aZ
2m

ox?  dy?

where E, is the energy eigenvalue and #,(x,y) is the
quantum eigenfunction that solves (17) and satisfies the
boundary conditions ¥,(x,0)=0 and ,(x,x cot¢)=0
(i.e., it vanishes along the wedge boundaries). Recently
[20,21] several thousand eigenvalues of the wedge billiard
have been accurately obtained by a novel scattering ap-
proach; we refer the interested reader to the cited works
for details of the numerical method.

How do the periodic orbits manifest themselves in the
first-order change of the energy eigenvalues as the wedge
angle ¢ is changed by 6¢? In this case the parameter we
are changing and which we use to specify the boundary is
¢; we show the explicit dependence of all functions on
this parameter.

For the wedge billiard [11] we have the Thomas-Fermi
staircase given by

+mgy 4, (x,y)=E,¢,(x,y),

(17)
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tan
Nip(E,$)= }
1r(E,¢ 12rm#2g?
) ) 172
— < 372
6mhg | m (14+secd)E*?+1/6 . (18)
Differentiating Eq. (18) with respect to ¢ gives
ONg(E,¢) _ E?
¢ 12rm#*g2cos’p
12 .
— 1 i _§I~IL¢_E3/2 . (19)
6rfig | m COS2¢

Because the wedge billiard scales with energy the ac-
tion is a particularly simple function of energy given by
S (E,$)=S,( 1,$)E3,

One possible choice of h(E,w) is the function
h(E,0)=3VE /2)exp[ —(E3>?/a)*]cos(wE>?) .  (20)
The exponential damping factor exp[ —(E>*/?/a)?] is in-
cluded to make the sums on both sides of Eq. (15) abso-
lutely convergent [19,20]. The 3V E /2 factor is included
so that we can analytically perform the integrals required
in Eq. (15). Using this A(E,w) in Eq. (15), and switching
variables to u =E>/? we get the Gaussian damped cosine
transform

o0 2.2
S Au(ul”, ¢)exp] — (4 /a)*|cos(wu )= — [a(Z—mzaz)exp a)4a +bP(wa/2) ,845
n=0
e uyrr a a
—> > icos k—2— P|[kS, (1,9)+tw] - |+P [kSy(l,¢)h—a)]~2~
v k=1
. U, m a Qa
+sin |k—— | |C [kS?,(l,¢)ﬁ+a)}? C [kSy(l,qS)ﬁ—w]? ]
kv —kv oS (1,¢)
X (2mti(e T —gke %) -I—Va&)is , @D
[
where where M(—1/2,1/2,x?) is the confluent hypergeometric
3 172 . function [17]. The peak and crossing functions are re-
a= _a , bz___l__ 2 Sin spectively plotted in the inset of Fig. 3. From the inset,
96m V' m#i’g *cos’d 6mhig | m cos’ one sees that there is a peak or a crossing as the argument
2 x of the peak and crossing functions, respectively, is close
22) to zero, and that the functions drop off rapidly as one
Auu© d)=y —y© (23) moves away from x =0. For this reason, only the terms

n n n

and P(x) and C(x) are the so-called peak and crossing
functions respectively defined by

a2 —x2 2
P(x)=—2—e *M(—1/2,1/2,x°), (24)

27
& EX e x’ , (25)

C(x)=

in Eq. (21) with argument kS, (1,4)/7%i—w contribute ap-
preciably to the sum for w >0. Also, because both k and
u, are integers, only one of the terms cos(ku,m/2) or
sin(ku,m/2) is nonzero for a specific k in the sum.
Hence, the contribution to the sum from each periodic
orbit labeled by ¥ consists of an alternating series of
peaks and crossings [9].

For a specific numerical test we choose ¢ =60° and
8¢=—0.001".
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FIG. 3. F(w) denotes the quantal LHS (solid line) and classi-
cal RHS (dotted line) of Eq. (21). All known periodic orbits
with action S, (1,¢) <10.0 and their multiple traversals were in-
cluded in the classical calculations. The differences Eq. (23) for
the first 1000 quantal energy eigenvalues of the ¢=60.0° and
$=159.999° wedges and a value of a=50.0 were used for the
quantum calculations.

The quantum energy eigenvalues up to n=1000,
E{%0=28.23, ul%, =149.99, for the two wedge angles
¢=60° and ¢=59.999° have been calculated “exactly”
quantum mechanically [21] and hence we may calculate
the quantal (LHS) side of Eq. (21). The average change in
the energy dE oy, is found to be only (see Appendix)
|dEy|=|E8¢ /cosp sing| =0.04 << 1 of the average level
spacing at the energy of the 1000th eigenvalue. Since the
change in energy of the eigenvalues is small relative to
the level spacing the theory outlined in Sec. III should be
valid. We choose a=50, which guarantees that the
damping factor exp[—(u'3/@)?]<0.0001 and hence
that most of the contribution to the quantal side of the
sum comes from n < 1000.

On the classical, RHS of Eq. (21), the derivative
aS,(1,4)/0¢ may be numerically calculated by doing
three classical calculations, one at ¢=60°, another at
$=59.999°, and another at ¢ =60.001°. Also, the action,
stability exponent, monodromy matrix, and Maslov index
are calculated for the periodic orbits. As in previous
work [9,11] the contributions of the vertex orbits (orbits
that, at ¢ =60°, bounce directly into the wedge vertex) are
included in the sums with a factor 1 relative to that of
nonvertex orbits.

A test of Eq. (21) is given in Fig. 3 where we have plot-
ted the quantal LHS (solid line) versus the classical RHS
(dashed line).

V. DISCUSSION

As one can see, the agreement bctween the two curves
in Fig. 3 is qualitatively very good. They are practically
indistinguishable over the range 0= =<6, with small
differences appearing for w > 6, suggesting that the theory
we have derived works quite well indeed. The positions
of the crossings and the peaks [which, according to Eq.
(21) should occur at the actions of periodic orbits] are
well reproduced, as is the amplitude of the crossings and
peaks [which is related to the size of the energy shifts
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through the LHS of Eq. (21)]. Thus, we see that the ener-
gy shifts are intimately related to the periodic orbits of
the system; the energy shifts “know” about the periodic
orbits that have changed due to the perturbation and vice
versa. This is exactly what was found for systems with
smooth potentials [14—16].

The derivation of Egs. (14) and (15) from Eq. (2)
through the approximate association Eq. (10) is a
straightforward and direct approach. Another method of
deriving a semiclassical approximation to Eq. (2) may be
to use the expression given in Morse and Feshbach [23],
page 1061, which gives the first-order change in energy of
the system in terms of integrals of unperturbed wave
functions ¢*’ over the perturbed billiard surface bound-
ary. By using the expression for the Green function in
terms of the wave functions of the system, and then using
the semiclassical Green function in terms of classical tra-
jectories and evaluating the surface integrals semiclassi-
cally, one may hope to retrieve Eq. (14). Unfortunately,
this author has not yet managed to achieve success using
this method.

Using a scattering approach, an expression similar to
(14) has been independently derived very recently [24].
Using the Sinai billiard as an example, these authors also
find excellent agreement between the classical and quan-
tal Gaussian damped transforms.
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APPENDIX

In this Appendix we show how to calculate the mean
energy shift dE of an energy eigenvalue induced by a
boundary perturbation.

The total number of energy eigenvalues Nrg below
some energy E is given, on average, by the Thomas-Fermi
staircase N1g(E,n)

Ntg=N1elE,7) . (A1)

Keeping the total number of eigenvalues constant,
Nig=const , we vary the boundary shape and find that
we must vary the eigenvalue energy as follows:

ON+e(E,n) ONs(E,n)
TF ndE+ TF ndn

dN1p=0= 3E on (A2)
or
_ N p(E,n) AN(E,m) |
dE(E,n)=— [—“;T—dn] ‘——“;T— ,

(A3)



For the wedge billiard we have from (18) that the mean
energy shift of an eigenvalue at energy E is given to dom-
inant order in E as

dE(E,¢)=——22

3 cos¢ sing E. (Ad)
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Measured in terms of units of energy, E, where the aver-
age spacing between energy eigenvalues is 1 we have the
energy shift given by

dE(E,p)=——2 _F

cos¢ sing (AS)
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